This curriculum guideline on Physical Agents/Electrotherapy represents curricular content recommendations based upon feedback from physical therapy educators via a survey conducted by the Section on Clinical Electrophysiology and recommendations from the Electrotherapy/physical Agents Practice Committee of the Section. New topics will be added when evidenced-based, clinical research provides documented support from controlled or randomized trials published in peer-reviewed journals.

Individual practice setting, Practice Acts, Rules and Regulations regarding physical therapy practice may determine practice limitations and role delineation.

Terminal Behavioral Objectives

After didactic and clinical education, given the results of a client's evaluation and history, the graduate physical therapist will:

Given the results of a patient/client's evaluation and history, and the plan of care established by a PT, the PTA student will be expected to:

IDENTIFY, DESCRIBE AND EXPLAIN indications for interventions utilizing physical agents and electrotherapeutic modalities.

IDENTIFY contraindications & precautions to the application of therapeutic modalities.

SELECT the appropriate modality (PTA Students, within the established plan of care)

APPLY the modality in a safe & effective manner.

EXPLAIN normal and abnormal physiologic responses and psychologic reactions to treatment.

MODIFY modality application as indicated by the patient/client's response. (PTA students, through consultation with the PT)

ASSESS treatment outcome in response to the application of a physical agent or electrotherapeutic modality.

INTERPRET patient/client's response to treatment and make clinical decisions regarding treatment plan. (PTA students, through consultation with the PT)

DOCUMENT specific treatment parameters, application techniques, and treatment outcome.
Physical Agents & Electrotherapeutic Modalities Content Outline

I. Prerequisite and/or Concurrent Information

Basic Clinical tests and measurements
 Neuromuscular
 Muscle Strength and Endurance
Sensory Perception Testing
 cutaneous pain, temperature, touch, pressure
 cognitive awareness
Reflex Testing
Basic gait analysis
Neuroanatomy and Basic Neurophysiology
Cardiovascular System
Peripheral Circulatory System
Edema
Heart Rate, Blood Pressure (Vital signs)
Musculoskeletal System
 Active & Passive Motion
 Basic Postural Assessment
Human Systems and Cellular Physiology
 Human Anatomy: neural, muscular, skeletal
Clinical Histology and Pathology including but not limited to:
 Inflammation, wounds (burns, ulcers, tissue trauma) & tissue healing
 (skin, nerve, tendon, muscle, joint structures)
Pain and Pain Control
Circulatory Disorders
Fundamentals of physics, biology, chemistry
Clinical Pharmacology:
 Basic concepts related to potential interactions of drugs with
 clinically administered physical agents as appropriate. (e.g. sensitivity to UV, wound care,
 inflammatory conditions, clotting factors)
Clinical Neurology, Myology

II. Physical Therapy Clinical Knowledge and Skills

Thermotherapy
 Conductive Heating Agents:
 Hot Packs
 Paraffin
 Hydrotherapy
 Fluidotherapy

Deep Heating Agents:
 Thermal Diathermy, Short-wave diathermy
 Ultrasound

Cryotherapy:
 Cold packs, Ice packs, Cold Compresses
 Ice Massage
 Contrast Immersion baths
 Cold Compression Devices
 "vapocoolant sprays"

Actinotherapy:
 Ultraviolet
 Low Power laser
Physical Therapy Clinical Knowledge and Skills continued

Mechanotherapy:
 Mechanical Traction
 Intermittent Pneumatic Compression Devices

Electrotherapy: contemporary electrical stimulation programs and required characteristics of stimulators utilized for:
 Pain control
 Neuromuscular Electrical Stimulation for:
 Muscle Strengthening
 Restricted Joint Motion
 Hypertonic/Hypotonic Muscle (e.g. spasticity)
 Activation of Muscle for Joint Positioning,
 Postural Control or Enhancement of
 Functional Movement or Motor Control

Tissue Healing and Tissue Repair
 Enhancement of Wound Heating & Circulation
 Osteogenesis, Edema Control

Medication Delivery: Iontophoresis of Analgesics & Anti-inflammatory Agents, etc.

Electrical Stimulation of Denervated Muscle

Other Topics for Inclusion:
 Topical Hyperbaric Oxygen Therapy
 Pulsed Ultrasound (Non-thermal US)
 Pulsed Radio Frequency Radiation (non-thermal)
 Phonophoresis
 Biofeedback: electromyographic & temperature

III. Common Features of Physical Agents & Therapeutic Modalities Topics

 Physics of Heat, Light, Electricity, Mechanical Principles
 Fundamental Concepts & Terminology
 Electrotherapy: Describe, Differentiate and Recognize
 Types of Electrical Current, Common Amplitude and Time
 Dependent Characteristics of Electrical Stimuli

 Physiologic Effects of Heat, Electromagnetic Radiation, Electricity,
 Mechanical Forces (Normal, Desired effects vs. abnormal or adverse effects)

 Instrumentation:
 Calibration and Maintenance
 Safety Considerations
 Principles of Operation

 Indications for Clinical Application
 Clinical Application Principles and Procedures
 Clinical Problem Solving Skills (case study examples)
 Supervised laboratory Experiences (Academic and Clinical)

 Contraindications/ precautions and potential adverse reactions to the application of each physical agent